next up previous contents
Next: Coefficiente di frizione a Up: Parametri dell'atto di moto Previous: Spessore di spostamento   Indice

Spessore di quantità di moto


$ \displaystyle \vartheta$ $\displaystyle =$ $\displaystyle \int_0^\infty{\frac{u}{U}\left(1-\frac{u}{U}\right)dy}$  
  $\displaystyle =$ $\displaystyle \int_0^\infty{\frac{x f'}{k x}\left(1-\frac{x f'}{k x}\right)\sqrt{\frac{\nu}{k}}d\eta}$  
  $\displaystyle =$ $\displaystyle \sqrt{\frac{\nu}{k}}\int_0^\infty{\frac{k F'}{k }\left(1-\frac{k F'}{k }\right)d\eta}$  
  $\displaystyle =$ $\displaystyle \sqrt{\frac{\nu}{k}}\int_0^\infty{F'\left(1-F'\right)d\eta}$  
  $\displaystyle =$ $\displaystyle 0.292\sqrt{\frac{\nu}{k}}$  
  $\displaystyle =$ $\displaystyle 0.292\sqrt{\frac{\nu x^2}{k x^2}}$  
  $\displaystyle =$ $\displaystyle 0.292\ x\ \sqrt{\frac{\nu}{U x}}$  
  $\displaystyle =$ $\displaystyle 0.292\ x\ \frac{1}{\sqrt{\mathcal{R}e_x}}$  

$\displaystyle \frac{\vartheta}{x}\sqrt{\mathcal{R}e_x}=0.292$ (8.10)



2009-01-26